Page last updated: 2024-12-10

1-[1-(4-methoxyphenyl)-2,5-dimethyl-3-pyrrolyl]-2-[(6-methyl-2-nitro-3-pyridinyl)oxy]ethanone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

You're asking about a specific chemical compound: **1-[1-(4-methoxyphenyl)-2,5-dimethyl-3-pyrrolyl]-2-[(6-methyl-2-nitro-3-pyridinyl)oxy]ethanone**. This compound is likely a synthetic molecule, possibly designed for research purposes.

Without additional context, it's difficult to pinpoint its exact significance. However, we can break down its structure and speculate about its potential research value based on its functional groups:

* **1-(4-methoxyphenyl)-2,5-dimethyl-3-pyrrolyl:** This portion indicates a substituted pyrrole ring. Pyrroles are common heterocyclic rings found in many natural products and pharmaceuticals. The methoxy group (OCH3) might contribute to its pharmacological properties.
* **2-[(6-methyl-2-nitro-3-pyridinyl)oxy]ethanone:** This section signifies an ethanone (ketone) group linked to a substituted pyridine ring. The nitro group (NO2) suggests potential for biological activity as it is commonly found in drugs.

**Possible Research Importance:**

This compound could be important for various research areas, including:

* **Pharmacology:** As a synthetic molecule, it might have potential as a drug candidate. The presence of a ketone, pyrrole, and nitro group suggests it could interact with biological targets.
* **Materials Science:** It could be a precursor for synthesizing new materials with specific properties.
* **Organic Chemistry:** It might serve as a model compound for studying reactions involving pyrroles and pyridines.

**Important Note:** To understand the specific research importance, you would need additional information about the compound, such as:

* **Source:** Was it synthesized by a research group? What was the intended purpose?
* **Biological Activity:** Does it have any known pharmacological effects?
* **Structure-Activity Relationships:** Are there any known relationships between its structure and potential activity?
* **Published Research:** Has this compound been studied and reported in any scientific publications?

**To find more information, you should search for the compound name or its CAS number (if available) in scientific databases like PubChem, SciFinder, or Google Scholar.**

Cross-References

ID SourceID
PubMed CID4641095
CHEMBL ID1563318
CHEBI ID116154

Synonyms (11)

Synonym
HMS2585K10
smr000256115
MLS000389841
1-[1-(4-methoxyphenyl)-2,5-dimethylpyrrol-3-yl]-2-(6-methyl-2-nitropyridin-3-yl)oxyethanone
CHEMBL1563318
Z24763932
1-[1-(4-methoxyphenyl)-2,5-dimethyl-3-pyrrolyl]-2-[(6-methyl-2-nitro-3-pyridinyl)oxy]ethanone
Q27198886
CHEBI:116154
AKOS033924342
way-626394
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
pyrrolesAn azole that includes only one N atom and no other heteroatom as a part of the aromatic skeleton.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (22)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, CruzipainTrypanosoma cruziPotency39.81070.002014.677939.8107AID1476
glp-1 receptor, partialHomo sapiens (human)Potency0.50120.01846.806014.1254AID624417
TDP1 proteinHomo sapiens (human)Potency4.41810.000811.382244.6684AID686978; AID686979
Smad3Homo sapiens (human)Potency15.84890.00527.809829.0929AID588855
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency25.11890.011212.4002100.0000AID1030
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency39.81070.707936.904389.1251AID504333
P53Homo sapiens (human)Potency40.87190.07319.685831.6228AID504706; AID624305
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency39.81070.035520.977089.1251AID504332
parathyroid hormone/parathyroid hormone-related peptide receptor precursorHomo sapiens (human)Potency39.81073.548119.542744.6684AID743266
importin subunit beta-1 isoform 1Homo sapiens (human)Potency5.17355.804836.130665.1308AID540253
mitogen-activated protein kinase 1Homo sapiens (human)Potency39.81070.039816.784239.8107AID1454
snurportin-1Homo sapiens (human)Potency5.17355.804836.130665.1308AID540253
GTP-binding nuclear protein Ran isoform 1Homo sapiens (human)Potency5.17355.804816.996225.9290AID540253
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency100.00000.050127.073689.1251AID588590
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency26.63210.00798.23321,122.0200AID2546; AID2551
gemininHomo sapiens (human)Potency21.85280.004611.374133.4983AID624296; AID624297
DNA polymerase kappa isoform 1Homo sapiens (human)Potency89.12510.031622.3146100.0000AID588579
VprHuman immunodeficiency virus 1Potency3.16231.584919.626463.0957AID651644
survival motor neuron protein isoform dHomo sapiens (human)Potency14.12540.125912.234435.4813AID1458
lamin isoform A-delta10Homo sapiens (human)Potency22.38720.891312.067628.1838AID1487
Guanine nucleotide-binding protein GHomo sapiens (human)Potency50.11871.995325.532750.1187AID624287
TAR DNA-binding protein 43Homo sapiens (human)Potency3.16231.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (23)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (12)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (10)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]